An Innovative Mechanical Engineering Technology Pathway Aligned with Industry Needs

Dr. David I. Spang, Rowan College at Burlington County

Dr. David Spang is the Sr. Vice President & Provost at Rowan College at Burlington County in Mt. Laurel, NJ. Prior to being named Sr. Vice President & Provost, Dr. Spang served as Interim President, Provost, Vice President of Academic Programs and as Dean of the Science, Mathematics, and Technology division. Dr. Spang holds a PhD degree in Materials Science and Engineering and a MBA degree, with a concentration in Innovation and Technology Management. Prior to joining academia, Dr. Spang spent nearly twenty years in R&D and business development.

Dr. Edem G. Tetteh, Rowan College at Burlington County

Edem G. Tetteh is currently the Founding Dean of STEM at Rowan College at Burlington County. He previously served as Acting Dean of Academic Affairs at Potomac State College of WVU after the position of Assistant Vice President for Academic Affairs and Associate Professor at Paine College. He has held a faculty position in the Industrial and Logistics Technology (INLT) program in the Department of Technology at Virginia State University. He received his B.S. in manufacturing systems and a M.S. in industrial engineering both from North Carolina Agricultural and Technical State University. He received his Ph.D. in technology from Purdue University, West Lafayette. Tetteh has authored a book entitled "Engineering Approach to Work Design: Issues for the Obese Workers" and a forthcoming book in 2012 entitled “Customer-Oriented Global Supply Chains: Concepts for Effective Management.” He also has several publications in the area of ergonomics and human factors and logistic and supply chain. He directed the self-study leading to the accreditation of the Industrial and Logistics Technology program by the Association of Technology Management and Applied Engineering (ATMAE).

Prof. Ratneshwar Jha, Rowan University

Dr. Ratneshwar (Ratan) Jha is Department Head & Professor of mechanical engineering at Rowan University. He is a fellow of the American Society of Mechanical Engineers (ASME), an associate fellow of the American Institute of Aeronautics and Astronautics (AIAA), a member of the AIAA Adaptive Structures Technical Committee, and an editorial board member for the International Journal of Aerospace Engineering. Dr. Jha earned his Ph.D. in mechanical engineering from Arizona State University, and holds an MS in aerospace engineering from Georgia Tech. He received his BS in aeronautical engineering from the Indian Institute of Technology.
An Innovative Mechanical Engineering Technology Pathway Aligned with Industry Needs

Abstract

As institutions of higher education strive to maintain effective and affordable educational pathways, innovative partnerships between associate and baccalaureate degree granting institutions can facilitate a student’s progress while maintaining close alignment with industry needs. This paper details the continuing efforts of a multi-year project between a two-year college, a university and industry that has resulted in the creation of well-aligned associate and baccalaureate degrees in mechanical engineering technology. These offerings represent new degrees for both institutions, as well as an entirely new department of engineering technology for the university that complements its already existing engineering programs. Both degrees are based on a strong alignment with industry-defined requirements that have been identified through on-site forums and engagement with a robust industrial advisory board. The degrees emphasize technical and non-technical skills and competencies crucial to the practice of advanced manufacturing disciplines by mechanical engineering technologists. The delivery of the requisite content will be reinforced by the use of an applications database that will directly link course contents with industry practice in a clear and effective manner. Additionally, the outlined associate to baccalaureate degree pathway will be delivered through an innovative “3+1” model in which the two-year college will deliver the first three years of the program, and the university will then deliver the final year, on the two-year college’s campus. This novel and innovative model will allow students to achieve a high-quality associate and baccalaureate degree in mechanical engineering technology for close to the cost of a single year at some institutions. Rigorous assessment methodologies have been included in both programs and will ensure the consistency of performance measures longitudinally between both institutions.

Background

In an effort to offer high quality and affordable educational pathways to students, Rowan College at Burlington County (RCBC) and Rowan University (RU) have partnered to offer engineering technology degrees supporting Advanced Manufacturing competencies. These efforts have stemmed from a National Science Foundation-funded project addressing the needs of the regional advanced manufacturing industries and began with an inventory of both non-technical and technical skills required by graduates (NSF Award 1601487). The focus on Advanced Manufacturing led to the development of a Mechanical Engineering Technology (MET) pathway from Associate degree to Baccalaureate degree, along with the creation and strengthening of an analogous Electrical Engineering Technology (EET) pathway. These academic disciplines and
educational pathways are expected to provide meaningful career opportunities for graduates as the US Department of Labor, Bureau of Labor Statistics (BLS) indicates a positive job outlook for MET careers that is expected to grow approximately 5% for the ten-year period 2016-2026 (1), while the outlook for EET careers is anticipated to grow 2% for the same period (2).

The new degree pathways are structured in a “3+1” format, where RCBC will deliver the first three years of the program, after which students will transfer to RU as seniors, and complete the fourth year on RCBC’s campus at a discounted tuition rate. This innovative delivery model is supported by the recommendations of the New Jersey College Affordability Study Commission (3) in which the creation of “3+1” degree programs was identified as an opportunity to make college more affordable.

Innovative “3+1” Model

There are several key elements of the “3+1” delivery model, for both the associate degree and the baccalaureate degree-granting institutions, that must be firmly developed and followed to ensure the intended benefit to students.

Associate Degree-Granting Institution

For the associate degree-granting institution, the key elements include the sharing of course syllabi and outcomes, the demonstrated ability to provide high quality academic instruction that is aligned with rigorous academic outcomes, and the presence of highly qualified, well-trained, and passionate faculty members.

The associate degree-granting institution must have processes in place to create direct analogs of any needed junior-level courses and must have effective outcomes assessment processes as well. The close monitoring of the achievement of learning outcomes will ensure the intended purpose of the “3+1” pathway is achieved. The assessments must include the same activities and criteria for success as at the baccalaureate degree-granting institution, including pre-assessments in some courses, as well as the same benchmarks, measurement methodology, and targeted learning outcomes. A close relationship between both institution’s assessment offices must be developed.

Finally, in order to receive Federal financial aid, students must pursue coursework applicable to a degree program in which they are matriculated. Therefore, in order to earn up to 90 credits to transfer to the baccalaureate degree-granting institution, students must maintain aid eligibility and matriculation status beyond the initial 60 credits for an associate degree. One manner in which this can be accomplished is through the pursuit of a second aligned associate degree, in which there is no duplication of credits and allows students to progress to the 90 credits needed for transfer to the baccalaureate degree-granting institution as a senior.
Baccalaureate Degree-Granting Institution

For the baccalaureate degree-granting institution, a close alignment with the associate degree-granting institution courses and outcomes must be developed. Additionally, the institution must share the content and the learning outcomes for any needed courses, ensuring that the learning outcomes will be the same between both institutions.

Additionally, the baccalaureate degree-granting institution must be willing to share the credentials required for faculty, and have the ability to review and comment on the curricula vitae of those being considered to teach the third year of the curriculum.

The baccalaureate degree-granting institution will be solely responsible for delivering the senior year courses and will have an opportunity to evaluate the student’s candidacy for transition to the baccalaureate portion of the pathway. The baccalaureate degrees coming from this program will be awarded solely by the baccalaureate degree-granting institution.

Overall, this innovative “3+1” delivery model will provide access to both affordable and high-quality educational pathways, leading to both associate and baccalaureate degrees, in academic disciplines that are in high demand and will provide employment opportunities for graduates.

The Needs of Industry

In order to maintain a strong focus on industry needs, both RCBC and RU have engaged industry partners in skills inventory activities that have identified the most important non-technical and technical skills. These identified skills were then used as the basis for the new degree programs, with appropriate competencies strongly linked to the course and program outcomes.

This important information was gathered through activities such as a technology conference in which 59 participants, including academic and industry partners, discussed the critical skills and competencies that are needed in industry and should be reflected in the new MET curriculum. Additionally, the Principal Investigator and Co-Principal Investigator have visited several industry partner sites to discuss the goals of the grant and to solicit input to the project.

Additionally, the creation of a robust industrial advisory committee in support of the new programs has had a far-reaching impact which includes support for RCBC’s STEM division in a variety of ways, and the inclusion of networking and cybersecurity as a program of interest to industry partners.

The industrial advisory committee is also providing critical input to the development of another goal of the current project, i.e. the development of an applications database. The applications database will highlight the practical applications of important scientific and technical principles including vacuum and the Ideal Gas Law, optics and Snell’s Law, Young’s Modulus, applied
mathematics and physics, CNC programming, communication in the workplace, and workplace ethics, for example.

Engineering Technology Curriculum

The goal of RCBC’s Engineering Technology pathway is to produce graduates who are able to obtain employment as a technologist or transfer to a four-year college. In addition, graduates will be technically competent, able to communicate effectively, work well with others and demonstrate professionalism. Additionally, students will understand how products and machinery work on a detailed level.

In considering the entire “3+1” pathway from associate degree to baccalaureate degree, both levels of ABET-ETAC outcomes and curricular topics have been considered in creating the new MET curriculum (4) in anticipation of seeking ABET accreditation.

MET Associate Degree

According to ABET-ETAC requirements, the following student outcomes and curricular topics are required in an associate degree:

Student Outcomes

(a) an ability to apply the knowledge, techniques, skills, and modern tools of the discipline to narrowly defined engineering technology activities
(b) an ability to apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require limited application of principles but extensive practical knowledge
(c) an ability to conduct standard tests and measurements, and to conduct, analyze, and interpret experiments
(d) an ability to function effectively as a member of a technical team
(e) an ability to identify, analyze, and solve narrowly defined engineering technology problems
(f) an ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature
(g) an understanding of the need for and an ability to engage in self-directed continuing professional development
(h) an understanding of and a commitment to address professional and ethical responsibilities, including a respect for diversity
(i) a commitment to quality, timeliness, and continuous improvement

Curricular Topics

(a) Application of principles of geometric dimensioning and tolerancing
(b) Use of computer aided drafting and design software
(c) Selection, set-up, and calibration of measurement tools/instrumentation
(d) Preparation of laboratory reports and systems documentation associated with development, installation, or maintenance of mechanical components and systems
(e) Basic familiarity and use of industry codes, specifications, and standards
(f) Use of basic engineering mechanics
(g) An integrating or capstone experience utilizing skills acquired in the program

MET Baccalaureate Degree

According to ABET-ETAC requirements, the following student outcomes and curricular topics are required in a baccalaureate degree:

Student Outcomes

(a) an ability to select and apply the knowledge, techniques, skills, and modern tools of the discipline to broadly-defined engineering technology activities
(b) an ability to select and apply a knowledge of mathematics, science, engineering, and technology to engineering technology problems that require the application of principles and applied procedures or methodologies
(c) an ability to conduct standard tests and measurements; to conduct, analyze, and interpret experiments; and to apply experimental results to improve processes
(d) an ability to design systems, components, or processes for broadly-defined engineering technology problems appropriate to program educational objectives
(e) an ability to function effectively as a member or leader on a technical team
(f) an ability to identify, analyze, and solve broadly-defined engineering technology problems
(g) an ability to apply written, oral, and graphical communication in both technical and non-technical environments; and an ability to identify and use appropriate technical literature
(h) an understanding of the need for and an ability to engage in self-directed continuing professional development
(i) an understanding of and a commitment to address professional and ethical responsibilities including a respect for diversity;
(j) a knowledge of the impact of engineering technology solutions in a societal and global context
(k) a commitment to quality, timeliness, and continuous improvement

Curricular Topics

(a) Application of principles of geometric dimensioning and tolerancing
(b) Use of computer aided drafting and design software
(c) Perform selection, set-up, and calibration of measurement tools/instrumentation
(d) Elements of differential and integral calculus
(e) Manufacturing processes
(f) Material science and selection
(g) Solid mechanics (such as statics, dynamics, strength of materials, etc.)
(h) Mechanical system design
(i) Thermal sciences (such as thermodynamics, fluid mechanics, heat transfer, etc.)
(j) Electrical circuits (ac and dc) and electronic controls
(k) Application of industry codes, specifications and standards
(l) Technical communications typically used in preparation of engineering proposals, reports, and specifications

Table I. outlines the four-year MET degree pathway within the “3+1” framework, with years 1-3 delivered by RCBC and year 4 delivered by RU.

<table>
<thead>
<tr>
<th>Table I. Four-Year MET Degree Pathway within the “3+1” Framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Engineering Technology</td>
</tr>
<tr>
<td>As of 12/20/18</td>
</tr>
<tr>
<td>FIRST YEAR- RCBC</td>
</tr>
<tr>
<td>FALL</td>
</tr>
<tr>
<td>Freshman Engineering Clinic I</td>
</tr>
<tr>
<td>Precalculus (Inc. Trig, LA)</td>
</tr>
<tr>
<td>General Chemistry I w/ Lab</td>
</tr>
<tr>
<td>College Comp I ENG 101</td>
</tr>
<tr>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

| **SECOND YEAR-RCBC** |
FALL	**CR**	**SPRING**	**CR**		
Sophomore Engineering Clinic I	EGR 251	1	Sophomore Engineering Clinic II	EGR 252	1
College Comp. II or Tech. Writing	ENG 102/105	3	Public Speaking	SPE 102	3
General Physics I w/lab	PHY 210/211	4	Mat Sci and Manufacturing	MET 235	3
Engineering Statics	EGR 201	3	Free Elective	3	
CNC Programming	MET 210	4	Applied Thermal Energy	MET 215	3
TOTAL	**15**	**TOTAL**	**13**		

2 year AAS degree program total credits: 60

| **THIRD YEAR-RCBC** |
FALL	**CR**	**SPRING**	**CR**		
Junior Tech. Clinic I -	EGR 351	2	Junior Tech. Clinic II -	EGR 352	2
General Physics II	PHY 212	3	Applied Thermal Energy II	MET 315	3
Calculus II and Analytic Geometry	MTH 119	4	Applied Fluid Mechanics	MET 325	3
Engineering Dynamics	EGR 202	3	Machine Design	MET 330	3
MET Lab	NEW	3	Principles of Microeconomics	ECO 203	3
TOTAL	**15**	**TOTAL**	**14**		

| **FOURTH YEAR- Rowan University** |
FALL	**CR**	**SPRING**	**CR**		
Senior Tech. Clinic I / Senior Design	EGR 451	2	Senior Tech. Clinic / Senior Design II	EGR 452	2
Advanced Manufacturing	ME 10.400	3	Global Literacy Elective	GENED	3
Applied Heat Transfer	MET 3XX	3	CNC Programming II	MET 3XX	3
MET Elective I	MET 4XX	3	Quality & Reliability	ME 10.342	3
MET Elective II	MET 4XX	3	MET Elective III	MET 4XX	3
Literature/Core Elective	GENED	3			
TOTAL	**17**	**TOTAL**	**14**		

Total program credits: 120
Next Steps

With the MET curriculum fully developed, the focus of the project will now turn towards the final development of the Applications Database. The database will serve as a resource for faculty to illustrate real-world examples of the applications of scientific and technical principles contained within the curriculum.

With relevant input from industrial advisory committee members, the development of several meaningful applications of scientific and technical principles have been framed according to the designed format and will:

1) Have readily identifiable significance
2) Be summarized and communicated effectively
3) Have significance to an emerging student
4) Follow a sound pedagogical approach

Fully developed and available applications will be widely disseminated through a web page that will be created for this purpose.

Summary

The current project describes an innovative approach to creating and delivering a MET program that is comprised of meaningful technical competencies and an affordable and accessible educational pathway. This unique pathway involves a “3+1” linkage between an associate degree-granting institution (RCBC) and a baccalaureate degree-granting institution (RU) in which the first three years are delivered by RCBC, and the fourth year is delivered by RU, on RCBC’s campus.

The new program was created with significant industrial partner input and is aligned with the ABET-ETAC criteria for MET programs. Both non-technical and technical competencies, as are important in industry, are a focus of the program.

Finally, the interest and excitement focused on the new engineering technology program has had a positive impact on the STEM division and RCBC overall, through collaboration between faculty and staff, as well as through an increased focus on the importance of technical and non-technical skills.
Acknowledgments

The authors wish to thank and recognize the following members of the project management team, for their efforts in facilitating communication between stakeholders and for developing and recording many important details of the project. These personnel include Mr. Daniel Sullivan, the STEM-NSF Grant Project Manager, and Ms. Elaine Young, the NSF Grant Coordinator.

The authors also wish to gratefully acknowledge the support of the National Science Foundation (NSF), through the Division of Undergraduate Education, DUE-1601487, which made this effort possible. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

The authors also wish to acknowledge Rowan College at Burlington County and Rowan University for the extensive support offered in the development and alignment of the mechanical engineering technology curricula.

References

